Tuesday, February 15, 2011

APPLICATION

Extraction of aluminium:

Aluminium is obtained by the electrolytic reduction of its molten oxide, alumina (Al2O3). Because alumina has a very high melting point (2045 ºC), the mineral cryolite (Na3AlF6) is added to lower the melting point in order that the electrolysis may be carried out at about 950 ºC. The electrolytic cell has carbon anodes and a carbon cathode (which forms the lining of the tank in which the electrolysis takes place). Carbon dioxide is formed at the anodes, and aluminium at the cathode. It is heavier than the molten alumina/cryolite mixture, and sinks to the bottom of the cell, where it is tapped off. The procedure is known as the Hall-Héroult process.

Extraction of aluminium

Aluminium extraction is very demanding on electrical current (typically, 3-5 V and 100 000 A), and is economical only where power is cheap.

Electrorefining of copper:

When copper is first obtained by reduction of its ores, it is cast as impure slabs or ingots, called blister copper. In the electrorefining process, the blister ingots are used as anodes in an electrolytic cell, where an acid solution of copper (II) sulphate is used as electrolyte. Initially, the cathodes consist of thin sheets of pure copper.

Electrorefining of copper

During electrolysis, copper passes into solution from the anodes, (leaving the impurities, normally containing silver, gold and platinum) as an anode slime, which sinks to the bottom of the cell. The anode reaction is

Anode reaction: electrorefining of copper

At the cathode, copper (II) ions are discharged and the pure copper sheet becomes coated with an increasingly thick layer of very pure copper:

Cathode reaction: electrorefining of copper

Electroplating:

Electroplating consists of depositing a thin layer of a metal on another, either for protection or for the sake of appearance. Typically, a brass or nickel object is coated with a layer of silver by making use of electrolysis of a silver solution, using the object to be coated as the cathode:

The anode consist of pure silver, and the cathode is the object to be plated. The electrolyte is a mixure of silver nitrate with potassium cyanide.

The reactions are:

At the anode: Ag → Ag+ + e-

At the cathode: Ag+ + e- → Ag

The cyanide ensures a low concentration of silver ions, a condition for providing the best plating results.

During the process, the concentration of silver in the electrolyte remains constant, as the rate of reduction at the cathode (which is the rate of deposition of silver on the object) is the same as the rate of reduction at the anode (which is the rate of rate of dissolution of the silver anode).

No comments:

Post a Comment