Components
An electrolytic cell has three component parts: an electrolyte and two electrodes (a cathode and an anode). The electrolyte is usually a solution of water or other solvents in which ions are dissolved. Molten salts such as sodium chloride are also electrolytes. When driven by an external voltage applied to the electrodes, the electrolyte provides ions that flow to and from the electrodes, where charge-transferring, or faradaic, or redox, reactions can take place. Only for an external electrical potential (i.e. voltage) of the correct polarity and large enough magnitude can an electrolytic cell decompose a normally stable, or inert chemical compound in the solution. The electrical energy provided undoes the effect of spontaneous chemical reactions.
Anode and cathode definitions depend on charge and discharge
Michael Faraday defined the cathode as the electrode to which cations flow (positively charged ions, like silver ions Ag+
), to be reduced by reacting with (negatively charged) electrons on the cathode. Likewise he defined the anode as the electrode to which anions flow (negatively charged ions, like chloride ions Cl−
), to be oxidized by depositing electrons on the anode. Thus positive electric current flows from the cathode to the anode. To an external wire connected to the electrodes of a battery, thus forming an electric circuit, the cathode is positive and the anode is negative.
Consider two voltaic cells, A and B, with the voltage of A greater than the voltage of B. Mark the positive and negative electrodes as cathode and anode, respectively. Place them in a circuit with anode near anode and cathode near cathode, so the cells will tend to drive current in opposite directions. The cell with the larger voltage discharges, making it a voltaic cell. Likewise the cell with the smaller voltage charges, making it an electrolytic cell. For the electrolytic cell, the external markings of anode and cathode are opposite the chemical definition. That is, the electrode marked as anode for discharge acts as the cathode while charging and the electrode marked as cathode acts as the anode while charging.
Uses
As already noted, water, particularly when ions are added (salt water or acidic water) can be electrolyzed (subject to electrolysis). When driven by an external source of voltage, H+
ions flow to the cathode to combine with electrons to produce hydrogen gas in a reduction reaction. Likewise, OH−
ions flow to the anode to release electrons and an H+
ion to produce oxygen gas in an oxidation reaction.
In molten sodium chloride, when a current is passed through the salt the anode oxidizes chloride ions (Cl−
) to chlorine gas, releasing electrons to the anode. Likewise the cathode reduces sodium ions (Na+
), which accept electrons from the cathode and deposits on the cathode as sodium metal.
NaCl dissolved in water can also be electrolyzed. The anode oxidizes chloride ions (Cl−
), and Cl2 gas is still produced. However, at the cathode, instead of sodium ions being reduced to sodium metal, water molecules are reduced to hydroxide ions (OH−
) and hydrogen gas (H2). The overall result of the electrolysis is the production of chlorine gas and aqueous sodium hydroxide (NaOH) solution.
Commercially, electrolytic cells are used in electrorefining and electrowinning of several non-ferrous metals. Almost all high-purity aluminium, copper, zinc and lead is produced industrially in electrolytic cells.
excellent blog post! thank you for sharing this very beneficial and educational article. i'll save for page for future use. Keep posting something like this one.
ReplyDeletewww.triciajoy.com
Happy Study!
Delete:)
We make the custom synthesis process more efficient and cost effective while maintaining the highest standards of quality and reliability. Tributyloctylphosphonium Bromide
ReplyDelete